25/09/2013

Função afim, linear e constante

Uma função definida por f: R→R chama-se afim quando existem constantes a, b que pertencem ao conjunto dos reais tais que f(x)= ax + b para todo x ∈ R. A lei que define função afim é:

Função linear

Uma função definida por f: R→R chama-se linear quando existe uma constante a ∈ R tal que f(x) = ax para todo x ∈ R. A lei que define uma função linear é a seguinte:

Função constante

Uma função definida por f: R→R chama-se constante quando existe uma constante b R tal que f(x) = b para todo x ∈ R. A lei que define uma função constante é:

Coeficientes numéricos

Cada coeficiente numérico de uma função caracteriza um elemento do gráfico dessa função.
• Coeficiente a: coeficiente angular de uma reta. A é igual à tangente do ângulo que a reta faz com o eixo x.
Quando a > 0, a função é crescente.
Quando a < 0, a função é decrescente.

• Coeficiente b: é a ordenada do ponto em que o gráfico de f cruza o eixo das ordenadas, ou seja, b = f(0).


Nenhum comentário:

Postar um comentário